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Master Equation for Quantum Brownian Motion
Derived by Stochastic Methods
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The master equation for a linear open quantum system in a general environment is
derived using a stochastic approach. This is an alternative derivation to that of Hu, Paz,
and Zhang, which was based on the direct computation of path integrals, or to that of
Halliwell and Yu, based on the evolution of the Wigner function for a linear closed
guantum system. We first show by using the influence functional formalism that the
reduced Wigner function for the open system coincides with a distribution function
resulting from averaging both over the initial conditions and the stochastic source of a
formal Langevin equation. The master equation for the reduced Wigner function can then
be deduced as a Fokker-Planck equation obtained from the formal Langevin equation.

1. INTRODUCTION

Open quantum systems are of interest in condensed matter physics (Caldeira
and Leggett, 1983a; Leggedt al., 1987), quantum optics (Walls and Milburn,
1994), quantum measurement theory (Zurek, 1981, 1982), nonequilibrium field
theory (Calzetta and Hu, 1988, 2000; Calzettal, 2000a; Stepheret al., 1999),
guantum cosmology (Habib, 1990; Habib and Laflamme, 1990; Paz and Sinha,
1991, 1992), and semiclassical gravity (Calzetta and Verdaguer, 1999; Hu, 1989).
An open quantum systm consists of a subset of degrees of freedom, whose dy-
namics one is interested in, within a larger closed quantum system undergoing
unitary evolution (Davies, 1976). This subsystem of interest is simply called the
“system” whereas the remaining degrees of freedom constitute the “environment.”
In general, the evolution of the system will be nonunitary and even non-
Markovian.

1Departamento de iBica, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires,
Argentina.

2Departament deiBica Fonamental, Universitat de Barcelona, Barcelona, Spain.

3Institut de Fsica d’Altes Energies (IFAE), Barcelona, Spain.

4To whom correspondence should be addressed at Departmerticke Fonamental, Universitat de
Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain.

2317

0020-7748/01/1200-2317/0 2001 Plenum Publishing Corporation



2318 Calzetta, Roura, and Verdaguer

A typical example of an open quantum system is the quantum Brownian mo-
tion (QBM) model, which consists of a single massive particle interacting with an
infinite set of independent harmonic oscillators with a Gaussian initial state (Ford
etal, 1963; Rubin, 1960, 1961; Zwanzig, 1959). The coupling may be linear both
in the system and environment variables or may be nonlinear in some or all of these
variables. The frequencies of the environment oscillators are distributed according
to a prescribed spectral density function, the simplest case corresponding to the so-
called ohmic environment. Part of the interest of the linear systems is that they are in
many cases exactly solvable and detailed studies of different aspects of open quan-
tum systems can be performed. One of the issues that have received much attention
in recent years is environment-induced decoherence as a mechanism to understand
the transition from the quantum to the classical regime (Zurek, 1991, 1993).

Certain useful information for an open quantum system is contained in the
master equationThe master equation is a differential equation for the time evo-
lution of the reduced density matrix of an open quantum system. The master
equation for linear coupling and ohmic environment at high temperature was first
deduced by Caldeira and Leggett (1983b), it was extended to arbitrary temperature
by Unruh and Zurek (1989), and it was finally obtained for a general environment
(i.e., for an arbitrary spectral density function) by Hu, Paz, and Zhang using path
integrals (Huet al., 1992). This result was then extended to the case of nonlinear
coupling by treating the interaction perturbatively up to quadratic ordeeftdl,

1993).

The reduced Wigner functioiis defined from the reduced density matrix
by an integral transform (Hillaret al., 1984; Wigner, 1932). This function is
similar in many aspects to a distribution function in phase space, although it is
not necessarily positive definite, and the dynamical equation it satisfies is similar
to the Fokker-Planck equatioffor classical statistical systems (Gardiner, 1983;
Risken, 1989; Wax, 1954). This equation is, of course, entirely equivalent to the
master equation for the reduced density matrix and we will often also refer to it as
the master equation. Halliwell and Yu exploited the fact that the Wigner function
for a linear closed quantum system evolves according to the classical equations of
motion to obtain the equation satisfied by the reduced Wigner function (Halliwell
and Yu, 1996). The reduced density matrix has been used to study decoherence
induced by the environment (Caldeira and Leggett, 1985; Giatial., 1996; Hu
et al, 1992, 1993; Joos and Zeh, 1985; Paz and Zurek, 1993; Unruh and Zurek,
1989; Zureket al., 1993). The Wigner function has also been used in studies of
emergence of classicality induced by an environment @Pak, 1993), especially
in quantum cosmology (Habib, 1990; Habib and Laflamme, 1990; Paz and Sinha,
1991, 1992).

Langevin type of equations (Sancho and San Miguel, 1979; Zwanzig, 1973)
as a suitable tool to study the semiclassical limit have been used recently in
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semiclassical gravity and cosmology (Calzettal., 1997; Calzetta and Hu, 1994;
Calzetta and Verdaguer, 1999; Campos and Verdaguer, 1996; Hu and Matacz,
1995; Hu and Sinha, 1995; Mamtand Verdaguer, 1999a—c, 2000). In inflationary
cosmology they have been used to describe the stochastic effect on the infla-
ton field (Calzetta and Gonorazky, 1997; Calzetta and Hu, 1995; Goncharov and
Linde, 1986; Goncharoet al., 1987; Habib, 1992; Habib and Kandrup, 1992;
Kiefer et al., 1998a,b; Kiefer and Polarski, 1998; Linde, 1986; Matacz, 1997a,b;
Mijic, 1990; Polarski and Starobinsky, 1996; Rey, 1987; Starobinsky, 1986) or
the stochastic behavior of large-scale gravitational perturbations (Roura and
Verdaguer, 1999a, 2000), which is important for cosmological structure forma-
tion. So far, in the functional approach the Langevin equation has been mainly
restricted to describe the classical or semiclassical limit. See, however, Ford
et al. (1988) for a quantum version of the Langevin equation in operator
language.

A closer look at the influence functional, nevertheless, reveals that a formal
Langevin equation can be extracted from this functional independently of the
existence of a classical limit at least for quadratic influence actions. This Langevin
equationis used to show that the reduced Wigner function can be written as aformal
phase-space distribution function associated to a stochastic process (Gakletta
2000b) [as earlier suggested in Anglin and Habib (1996)]. The master equation
governing its time evolution is then deduced as the corresponding Fokker-Planck
equation.

The plan of the paper is the following: In section 2 we briefly summarize
the essential concepts and results of the influence functional formalism for linear
open quantum systems. In section 3 we show how the reduced Wigner function
for the system can be expressed as an average over the different realizations of a
stochastic process. Thisresultis used in section 4 to give an alternative derivation of
the master equation for a general environment. Finally, we summarize and discuss
our results in section 5.

2. INFLUENCE FUNCTIONAL FORMALISM AND MASTER
EQUATION FOR LINEAR OPEN QUANTUM SYSTEMS

Let us first review a QBM model as an example of linear open quantum
system. We consider a harmonic oscillator of miksthe “system,” coupled to
a bath of independent harmonic oscillators of masghe “environment.” For
simplicity, let us assume that the system and environment are linearly coupled.
The action for the whole set of degrees of freedom is defined by:

SIx, {g;}] = SIX] + S{a;}] + Snlx, {9;}], (21)
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where the terms on the right-hand side correspond to the action of the system, the
environment and the interaction term respectively. They are given by:

9x] = /dt(%M)’(z— %MQZXZ), (2.2)

1 . 1
stta = Y fat(Gmaf - jmof?) 3
j

2mw

m| (w)/dtx(t)q(t;w),

(2.4)

SnilX, {q,»}]=12c,- / dix(t)g; () = /O doo

where we introduced the spectral dendifw) = Zj ncj2(2ma)j)*18(w — wj)
in the last equalityc(w) and q(t; ) are functions such that(w;) = c; and
q(t; w;j) = q;(t), c; being system-environment coupling parameters, @rahd
wj are, respectively, the system and environment oscillator frequencies. When no
special form is assumed for the spectral denkfty), this is usually referred to as
a general environment. One of the most common particular cases is the so-called
Ohmic environment, defined hiyw) ~ » (some high frequency cut-off may be
sometimes naturally introduced).

The reduced density matrix for an open quantum system is defined from the
density matrixp of the whole system by tracing out the environment degrees of
freedom

pr(Xs, Xg, tr) = /ndQJP(Xh {aj}, x5, {a}, tr)
j

:/d>q AX I(Xt, X5, e %, X, 1)pr (6, X, 1), (2.5)

where the last equation gives the evolution of the reduced density matrix by means
of the propagatod, which is defined in a path integral representation by

X(te)=Xt X'(t)=x} ) , .
J(xt, x’f Jteox, xi’, t) = f Dx / Dx/ el(S[x]*S[x]JrSF[x,x])/h’
X(ti)=Xi X' (ti)=x

(2.6)

whereS g [x, X']isthe influence action introduced by Feynman and Vernon (1963).
When the system and the environment are initially uncorrelated, i.e., when the ini-
tial density matrix factorizes(f) = o, (ti) ® pe(ti), wherep; (i) andg(ti) mean,
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respectively, the density matrix operators of the system and the environment at the
initial time) the influence functional, defined Wy{x, X' = exp{S[x, x'])/h,
can be expressed in the following way:

gjtr)=q"

F[X, X/] = H/dqgf)dei)dq;(i)/(q 0o DQJ
]

i (ti )ZQj

g (tr)=af"’ i
y / Dy exp[E(S[{q,-}] ~ Si{a)]
q

6)=q)"

4 8%, {q)] — SIX, {q;}])} e(a®) {0 t). @)

When the initial density matrix for the environmeja({qj(i)}, {q}(i)}, tj) is Gaussian,
the path integrals can be exactly performed and one obtains (Caldeira and Leggett,
1983b; Feynman and Hibbs, 1965; Feynman and Vernon, 1963):

S

SE[x, X1 = —Z/tf ds [ dSA(s)D(s, S)X(S) + |

i [u
— ds
ti ti 2 ;

X [tf dsS'A(s)N(s, S)A(S), (2.8)

t

whereX(s) = (x(s) + x/(s))/2 andA(s) = X'(s) — x(s). The kerneldD(s, s') and
N(s, §') are called the dissipation and noise kernel, respectively.

For environments consisting of an infinite number of oscillators itis especially
convenient to rewrite the first term on the right-hand side of Eq. (2.8) as

ts t¢
/ ds / ds A(S)Hpards, S)X(s), (2.9)
ti i

where we definetyadS, S') as formally equivalent te-2D(s, s')0(s — S'). Being
the product of two distributions the latter expression is not well defined in gen-
eral and suitable regularization and renormalization may be required; see (Roura
and Verdaguer, 1999b) for details. The local divergences preséftids, s') =
H(s, ') + Hqivd(s — ') can be canceled by suitable countertefigg in the bare
frequency of the syste? = Qen + Qqiv- From now on we will consider that this
infinite renormalization, if necessary, has already been performed so th&t heth
andH (s, s') are free of divergences.

From Egs. (2.5) and (2.6) a differential equation for the system’s reduced
density matrix known as the master equation can be derived. The expression for a



2322 Calzetta, Roura, and Verdaguer

general environment was first obtained by Hu, Paz, and Zhang using a path integral
approach (Heet al,, 1992) [see (Paz, 1994) for a slightly different derivation]:

. pr h? (82 92 1. o s
Mot = Tam e ke ) T M

1 , _ N
+ éM(SSZZ(t)(xz —x?)pr —ihA)(x — X)) (5 - ax/> Pr

0 d . ,
B0 ) (5 + o) o= MO0 XPor, (210
where the functionsQ?2(t), A(t), B(t), andC(t) represent a frequency shift, a
dissipation factor, and two diffusive factors, respectively. For explicit expressions
of these functions see section 4. An alternative representation for the system re-
duced density matrix is the reduced Wigner functitdr(X, p, t) defined as

1 [ :
W, (X, p,t) = > / dAEPAM o (X — A/2, X + A/2,1). (2.11)

It follows immediately that the master equation (2.10) can be written in the fol-
lowing equivalent form:

oW,

A 9
= (e, Wilps + 2A0) (PV)

ap

32\, 32\,
hMC(t)—, (2.12
8q8p+ C(t) 2’ (2.12)

+ hB(t)

where{Hg, W, }pg = —(p/M)aW; /3q + MQZ(t)qaW, /dp with Q&(t) = Q2 +
8Q2(t). This equation was directly derived by Halliwell and Yu (1996) exploiting
the fact that the Wigner function for the whole closed quantum system evolves
according to the classical equations of motion. Note that Eq. (2.12) is formally
similar to the Fokker-Planck equation for a distribution function.

3. STOCHASTIC FORMAL EXPRESSION FOR THE REDUCED
WIGNER FUNCTION

In this section we show that the reduced Wigner function can be written as a
formal distribution function for some stochastic process [see Cakziettg 2000b)
for a detailed exposition]. This will be the key starting point in the derivation of
the master equation given in the next section.

In order to find an explicit expression for the reduced density matrix (2.5)
at a timet;, we need to compute the path integrals appearing in Eq. (2.6) for the
reduced density matrix propagator. From now on we will consider 1. After
integrating the system action by parts and performing the Gaussian path integral
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for A(t) with Aj and A fixed, we obtain

X A¢ _% Xt
H 1 N 1 -1
/ DX DA e|A<L~X e_EA'N‘A — (det—) DX e—§(|_<X).N .(|_4x),

Xi Aj 27T Xi
(3.1)

wherelL(t,t) = M(%2 + Q2 ) 8(t —t') + H(t, t'). Taking into account the sur-
face terms arising from the integration by parts of the system action and definition
(2.11) for the reduced Wigner function, the result of the integration ayegives

or(Xs — At /2, Xt + At /2,t1)

N _% oo X s .
=2 (det2—> f dX; DX g z(L-X)-NT(L-X)
T _

00 Xi
x @ MXAOW (X, M X, §). (3.2)
The next step to perform is the following functional change:
X(1) > {Xi = X(t), p = MX; = MX(t),£(t) = (L - X)(t)}.  (3.3)

Note that with this change the functiot{t) gets substituted by the initial conditions
(Xi, pi) and the functior¥(t) in the path integration. It is important to note that

at this point the functio§ (t) is not a stochastic process but just a function over
which a path integral is performed. The functional change (3.3) is invertible as can
be explicitly seen:

t
mhmmnexmz&m+£mndm%m, (3.4)

whereGg(t’, t”) is the retarded (i.eGre(t’, t”) = 0 fort’ < t”) Green function

for the linear integro-differential operator associated to the kelfelt’), and
Xinn(t) = ftlt dt'Gre(t, t')&(t') is a solution of the inhomogeneous equatian (
Xinh)(i) = &(t) with initial conditionsXinn(ti) = 0 andd Xinn(t')/ot|v=, = 0. On

the other handX,(t) is a solution of the homogeneous equation K,)(t) = 0,

with initial conditionsX,(tj) = Xi andX(t)) = pi /M. Since the change is linear,

the Jacobian functional determinant will be a constant (this can be clearly seen by
skeletonizing the path integral). After performing the functional change, we obtain

or(Xs — A /2, X5 + A¢/2,t1) = K/ dXi/ dp/955(x(tf)—xf)

% ef%S-Nfl-EefiMX(tf)Afv\/r(xi, pi,t), (3.5)

where the delta functiof(X(t¢) — X¢) was introduced to restrict the functional
integral [ D¢ with free ends, in order to take into account the restriction on the final

points of the allowed paths for the integrfaﬂ(f DX appearing in Eq. (3.2). The
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contribution from the Jacobian has been included in the conktaBy demanding

the reduced density matrix to be normalized, i.e., That, (t;) = 1, provided that

the initial Wigner function is properly normalized, this constant can be determined
to be

K = U Dé e%““lf}lz [det(2r N)] . (3.6)

Finally, using the definition (2.11) for the Wigner function and the fact that
(2m)~ (7 dA ¢ @Prar e MXIDAT = §(MX(tf) — pr), we get an expression for
the reduced Wigner function

W (X, pryte) = K/wdxi /mdn /D&S(xaf)— X )8(MX(tr) — pr)

x & 25N TEW (X, iy ), (3.7)
which can be written in the following suggestive way:
Wr(va pfrtf)z <(8(x(tf)_Xf)8(Mx(tf)_ pf)>$>Xi,pia (38)

where

(...)e = [det(2rN)] 2 /Dg... g 26N (3.9)

(.o )xip E/ dXi/ dp ... W (X, pi, ti). (3.10)

Thus the reduced Wigner function can be interpreted as an average over a Gaussian
stochastic process(t) with (£(t)): = 0 and (§(t)5(t)): = N(t, t') as well as

an average over the initial conditions characterized by a distribution function
W (X, pi, ti). Itis only after formally interpreting(t) as a stochastic process char-
acterized by Eq. (3.9) that the equation defingifig in the functional change (3.3)

(L - X)) = &(v), (3.11)

can be regarded as a Langevin equation. We insist that, in general, Eq. (3.11) is
not meant to describe the actual trajectories of the system, but it should rather be
regarded as a formal tool. We should also remarkX{&t) and X(t¢) in Eq. (3.8)
correspond to solutions of the Langevin equation (3.11) for a given realization of
£(t), and thatX s and ps are coordinates of a point in phase space.

Note, in addition, that althoughV; (X, pi, ti) is real, which follows from
the hermiticity of the density matrix, and properly normalized, in general it is not
positive everywhere and, thus, cannot be considered as a probability distribution.
The fact that the Wigner function cannot be interpreted as a phase-space probability
density is crucial since most of the nonclassical features of the quantum state
are tightly related to the Wigner function having negative values. For instance,
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a coherent superposition state is typically characterized by the Wigner function
presenting strong oscillations with negative values in the minima (Gietial.,
1996; Pazt al., 1993), which are closely connected to interference terms.

4. FROM LANGEVIN TO FOKKER-PLANCK: DERIVATION
OF THE MASTER EQUATION

As mentioned above there is a simple one-to-one correspondence between any
density matrix and the associated Wigner function introduced in (2.11). Taking this
correspondence into account, the equation satisfied by the reduced Wigner function
is equivalent to the master equation satisfied by the reduced density matrix.

Equation (3.8) shows that the reduced Wigner function can be interpreted as
a formal distribution in phase space. By deriving it with respect to time and using
the Langevin-type equation in (3.11), one can obtain a Fokker-Planck differential
equation describing the time evolution of the system’s reduced Wigner function.

The derivation of the Fokker-Planck equation from the Langevin equation
with local dissipation is well understood [see Sancho and San Miguel (1979)].
However, in our case the existence of nonlocal dissipation makes it convenient to
review the main steps. Let us begin by computivy /ot from expression (3.8),

w = ((X(®)8'(X(t) = X)§(MX(t) — P))e)x..p

+((8(X () — X)MX ()8 (MX(t) — P))e)x..p

__pawXnpt) 9 --
=M ax a—p((S(X(t) — X)MX(t)

x S(MX(t) = P))e)x.p» (4.1)

where the fact thaX (t), /3 X(t), anda/a X (t) may be replaced bg/M, —3/3 X,
and—a/dp, respectively, since they are multiplying the delta functions, was used
in the second equality. Let us now concentrate on the expectation value appearing
in the last term and recall the expectation values defined in (3.9)—(3.10). We will
consider the Langevin-type equation

(L- X)) =&(t), (4.2)

corresponding to the functional change (3.3) and substitute the corresponding
expression foM X(t) so that the last expectation value in (4.1) can be written as
t

—M QL XW (X, p,t)+<<<— dtH(t,t’)X(t’)+$(t))

ti

x 8(X(t) — X)8(MX(t) — p)>$> . (4.3)

Xi, pi
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Any solution of Eg. (4.2) can be written as

t
X(t) = Xn(t) + ft dt” Gaadt’, t)E(L"), (4.4)

whereX;(t') is a solution of the homogeneous equatibn K)(t’) = 0 such that
Xn(t) = X, Xp(t) = p/M and Gaaft’, t”) is the advanced (i.eGaaft’,t”) = 0

for t’ > t”) Green function for the linear integro-differential operator associated
to the kernel (t, t’). The particular solution of the inhomogeneous Eq. (4.2)

t
Xinn(t') = /t dt” Gagt’, t")E(t") (4.5)

has boundary condition&in(t) = 0, d Xinn(t')/dt'|y— = 0. Both X(t') and
Gaat’, t”) can be expressed in terms of the homogeneous solutigt’y and
ux(t"), which satisfyu; (tj) = 1, u1(t) = 0 andux(tj) = 0, uy(t) = 1, respectively:
, N b2(t) (p/M)

Xp(t) = X t) — —=Zu(t :
o) = X(uatt) - Zu)) + T8
1 ug(t)ua(t”) — ua(t)ua(t”)
M Oy (t7)uz(t”) — Gz(t")ua(t”)

We use the advanced propagator so that there is no dependence on the initial
conditions at timd’ = t; coming from the homogeneous solution but just on the
final conditions attime&’ = t, i.e., on those the Fokker-Planck equation is written
in terms of. Using expression (4.4) the first term within the expectation value
appearing in Eq. (4.3) can be reexpressed as
t
dtH(E, )X E)S(X(L) — X)S(MX(t) — p)e)xi,p

i

uy(t), (4.6)

Gaadt', 1) = o(t” —t). @4.7)

t t t
= [ dtH(, t)Xnt)W (X, p,t)+/ dt’/ dt"H(t, )
ti t

t

x Gaadt', t){(E(X)3(X(1) = X)SMX() = P)e)xp-  (4.8)
The first term on the right-hand side can in turn be written as
—(MSQ)X + 2A(t) p) W (X, p, 1), (4.9
where
1 t
8Q(t) = o dt'H (t, t)[ua(t’) — (Ua(t)/Us(®)us(t)], (4.10)

i

1 . t
Alt) = E(Mul(t))’l /t dt'H(t, t")uy(t)). (4.11)
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In order to find an expression @& (t")s(X(t) — X)5(M X(t) — p)): we use
Novikov’s formula for Gaussian stochastic processes (Novikov, 1965), which cor-
responds essentially to use (3.9) and functionally integrate by parts with respect

to &(t),
t
EE)F(GED: = / AUN(U,U) GF(LE]/EQ Y. (4.12)

i

We then obtain the following expression:
(EESX(H) = X)B(MX(H) — P))e

e (s o [ (SXET) 8 SX(") 8
_/ de J, aUNe )<<as<t"> sxn) e s>‘<<w)>

x 8(X(t) — X)8(MX(t) — p)>
5

SX(t") 9 SX(t") 8
tm 8 M ( )_>

t t
— dt/// dt//N t/, t// 5 t/// _ t _
/n , SN )< (ss(t”) ax " sE() ap

x 8(X(t) — X)§(MX(t) — p)>
5

BX(W) 06X a)

t
=) N(t’t)<_<65(t”)ax 5E(t7) 3p

t
x 8(X(t) — X)§(MX(t) — p)$>, (4.13)

where we used again the presence of the delta functions to substitute the functional
derivativess/§ X(t”") and§/§ X(t"") by —8(t” —t) - 9/9X and —§(t"” —t) - M -

d/dp, respectively, inthe second equality. Functionally differentiating with respect
to £(t”) expression (3.4) foK(t) and analogously foK(t) we get

5X(t)

) Gret(t, "), (4.14a)
SX() 9 )
SE) aG,et(t,t ), (4.14b)

which after substitution into (4.14) leads to

(E@BX(E) — X)SMX(L) — p))e
Gt t") 3

t
0
=— [ dt'N{U, t") | Gret, ") — + M
@) (Gutt )55 + MR L

f;

)W(x, o.1).
(4.15)
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The retarded Green function can also be expressed in terms of the solutions of the
homogeneous equatian(t) anduy(t), which were previously introduced, as

1 ug(tua(t”) — up(t)us(t”)
M Q1(t")u(t”) — Ua(t")us(t”)
Note that it is important to use now the expression in terms of the retarded prop-
agatorGyet and the initial conditions<; and p; (at timet’ = t;), since the “final”
conditions X(t) and M X(t) depend ore(t”) (for t” < t). Putting all the terms
together, i.e., (4.3), (4.9), and (4.16), we reach the final expression for (4.1):

oW I(PW) 92W, 9°W,

2
= {Hg, W, 2A(t B(t MC(t !
P {Hr, Wi }pB + 2A(1) op + ()8X8p+ ()8p2

wheresQ(t) and A(t) are given by Egs. (4.11) and (4.12), and

Greft', t") = o(t' —t”). (4.16)

,(4.17)

t t t
B(t) = [ dt”N(t, t")Gret, t”) — / dtH(t, ) f At Gaat’, )
ti 1 t

t
x | dt”N(t", t")Gret, t"), (4.18)
ti
‘ " " aGret(ta tm) ! / ’ ‘ 1"~ v
CH = [ dt'N )= 50— = | dUH(LY) | dt'Gaalt' )
| | t,
t G t,t///
x [ dt”N(t”, t”’)M. (4.19)

ti at//

The last two expressions were obtained by combining the second term within the
expectation value appearing in (4.3) and the second term on the right-hand side of
Eqg. (4.9). It should be taken into account that if we put backhthgthere appears
one with every noise kernel in Egs. (4.19) and (4.20).

The expressions (4.11), (4.12), (4.19), and (4.20)fe(t), A(t), B(t), and
C(t), respectively, coincide exactly with those of Halliwell and Yu (1996), which
are in turn equivalent to those obtained in étwal. (1992). Thus, this derivation of
the master equation based on a stochastic description for the system is an alternative
to those given previously (Halliwell and Yu, 1996; ldtial., 1992; Paz, 1994) and
is, of course, in agreement with their results.

5. DISCUSSION

In this paper we have considered the stochastic description of a linear open
quantum system to give an alternative derivation of the corresponding master
equation. We have shown that the reduced Wigner function can be written as a
formal distribution function for a stochastic process characterized by a Langevin-
type equation. The master equation has then been deduced as the corresponding
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Fokker-Planck equation for the stochastic process. This derivation can be extended
to the case of nonlinear interaction between system and environment by computing
perturbatively the influence action up to quadratic order and even to the case of a
general potential for the system (Calzedtal., 2001).

It should be pointed out that whereas one can derive the Fokker-Planck
equation from the Langevin equation, the opposite is not possible in general.
One can always consider Langevin equations with stochastic sources character-
ized by different noise kernels which, nevertheless, lead to the same Fokker-Planck
equation and, thus, the same master equation. This can be argued from the expres-
sions obtained in the derivation of the Fokker-Planck equation. Let us consider,
for simplicity, the situation corresponding to local dissipation. A local contribu-
tion to the noise gives no contribution &(t), but it does contribute t€(t) as
can be seen from Eqs. (4.19) and (4.20) taking into accountGhgt,t) =0
and dGe(t’, t)/t" [v—x =M~ Thus, one can always choose any noise kernel
that gives the desired(t) and then add the appropriate local contribution to
the noise kernel to get the desir€dt) keeping B(t) fixed. Note that chang-
ing the noise kernel does not changé&). To illustrate the fact that there ex-
ist different noise kernels giving the sanBét), as was stated above, one may
consider the particular case corresponding to the weak dissipation limit so that
Gret, t') ~ (M)~ 1sinQ(t — t')9(t — t’). To see that a differerfti(t, ') giving
the sameB(t) as N(t, t') exists reduces then to show that there is at least one
nontrivial functionu(s, t) = N(t, t') — N(t, t') (with s = t — t’) such that for any
t one hasf(; dssin(Qs)v(s, t) = 0, which can be shown to be the case.

The fact that different Langevin equations lead to the same master equa-
tion reflects that the former contains more information than the latter. To be more
precise, what we showed was that a Langevin equation contains in general more in-
formation that the corresponding Fokker-Planck equation. To extend this assertion
to the master equation, one should make sure that different Langevin equations
leading to the same Fokker-Planck equation can be obtained from an influence
functional. Indeed this can be shown to be the case provided that one considers
general Gaussian initial states for the environment. The inequivalence between
the Langevin equation and the master equation can be qualitatively understood
in the following way. In the influence functional it is only the evolution of the
environment degrees of freedom that is traced out. Of course, having integrated
over all the possible quantum histories for the environment, no correlations in the
environment can be obtained. Nevertheless, since the system is interacting with
the environment, non-Markovian correlations for the system at different times may
in general persist. On the other hand, when considering either the reduced den-
sity matrix or its propagator, also the system evolution, except for the final state,
is integrated out. Consequently, information on non-Markovian time correlations
for the system is no longer available. Thus, only when the system’s reduced dy-
namics is Markovian, i.e., the influence functional is local in time, we expect that
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the Langevin equation and the master equation contain the same information. In
particular, for a Gaussian stochastic source, as in our case, the Langevin equation
contains the information about the system correlations at different times, which the
Fokker-Planck equation cannot in general account for. Only in the case in which
the dynamics generated by the Langevin equation is Markovian one can compute
the correlation functions just from the solutions of the Fokker-Planck equation
or, equivalently, the master equation for the propagdtoe, x5, tz; X1, X, t1);

see Eq. (2.6). The key point is the fact that the propagator for the reduced density
matrix only factorizes when the influence action is local. See Caleetih(n.d.)

for a detailed argument on this point.

It is important to note that for a closed quantum system the evolution de-
termined by the time evolution operatdsgt,, t;) obtained from the Schdinger
equation is always unitary and, thus, also Markovian. That is why theo8ctyér
equation suffices to get the correlation functions for a closed quantum system. On
the contrary, for an open quantum system the evolution is nonunitary and, provided
the influence action is nonlocal, not even Markovian.

Finally, we should insist on the fact that, although we have exploited the
formal description of open quantum systems in terms of stochastic processes, a
classical statistical interpretation is not always possible. Thus, although the Wigner
function is a real and properly normalized function providing a distribution for the
initial conditions of our formal stochastic processes, it is not a true probability
distribution function in the sense that it is not positive definite in general. In fact,
this property is crucial for the existence of quantum coherence for the system.
Nevertheless, even though the Langevin equation does not in general describe
actual classical trajectories of the system, it is still a very useful tool to compute
quantum correlation functions (Calzettal., 2000b) or even as an intermediate
step to derive the master equation.
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